H=16t^2+76t+23

Simple and best practice solution for H=16t^2+76t+23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=16t^2+76t+23 equation:



=16H^2+76H+23
We move all terms to the left:
-(16H^2+76H+23)=0
We get rid of parentheses
-16H^2-76H-23=0
a = -16; b = -76; c = -23;
Δ = b2-4ac
Δ = -762-4·(-16)·(-23)
Δ = 4304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4304}=\sqrt{16*269}=\sqrt{16}*\sqrt{269}=4\sqrt{269}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-76)-4\sqrt{269}}{2*-16}=\frac{76-4\sqrt{269}}{-32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-76)+4\sqrt{269}}{2*-16}=\frac{76+4\sqrt{269}}{-32} $

See similar equations:

| 4y-y=2y+10 | | 9h-27=h+21 | | X2+5.5x-1.5=0 | | 46=10+4e | | 3y=4(0)-12 | | 13y=4(0)-12 | | x2-15x+45=0 | | 8f-38=2f+34 | | 4q+4=32 | | 20=5(0)-4y | | 0.3x0.3=0.9 | | 7h-28=2h+27 | | 6h-1=4h-3 | | )3x-7,8=4(8,2+x) | | 7v-2=54 | | L=50w=15 | | 4.8x3.6=17.28 | | 10n-15=3n+20 | | 6x2-(2x-1)(3x+2)=4 | | 8l+10=-46 | | (4x+2)=4 | | 11x-2=8x.x= | | 8v-11=v+10 | | 11x-2=8x= | | 101=6x+5 | | 5r-12=2r+24 | | 14x-24=24-2x | | 3n+19=202 | | 4a-3+2a=33+3a | | 5r-5=3r+13 | | (X+11)=(x+2) | | -3(2y-0,8)+1,6=3,6-5y |

Equations solver categories